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1. Introduction

The low energy dynamics on the world volume of N coincident M5 or M2 branes is governed

by maximally supersymmetric conformal field theories in d = 6 and d = 3 dimensions.

The AdS/CFT correspondence ‘solves’ these theories at large N . While rather little is

understood about these theories at finite N (N 6= 1), it is known that they possess exactly

flat directions along a Coulomb branch; a reflection of the ability of these N parallel branes

to separate along transverse directions. This Coulomb branch is the metrically flat space

(R8)N/SN or (R5)N/SN , see [1]; the quotient by the symmetric group SN reflects the

identical nature of these branes.

In this note we study the radial quantization of (a sub class of) these Coulomb branch

solutions; we pause to explain what this means. Quantum field theories on Rd are most

often quantized by associating Hilbert Spaces with field configurations along constant time

Rd−1 slices. Under this procedure, the distinct M2 and M5 branes Coulomb branch solu-

tions parameterize distinct superselection sectors. In this note we instead study the radial

– 1 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
4

quantization of the worldvolume theories of M5 and M2 branes on R6 and R3 respectively.

This procedure is equivalent to the quantization of these theories on S5 × R or S2 × R,

and is natural from several points of view. First, it introduces a mass gap into the system,

regulating potentially severe infrared divergences. Relatedly (and more importantly for

this note) it yields the dual to M theory on global, geodesically complete, AdS4 × S7 and

AdS7 × S4 respectively.

Under radial quantization the world volume theories we study each have a unique

vacuum. Distinct Coulomb branch configurations are normalizable, finite energy fluctua-

tions about this vacuum.1 Sub classes of these solutions are respectively 1
8 and 1

4 BPS. In

this note we (radially) quantize these supersymmetric solutions and compute the partition

functions ZN
5 and ZN

2 , over the resultant Hilbert Space. We conjecture2 that ZN
5 and

ZN
2 are the exact, finite N partition function over the 1/8 or 1/4 BPS Hilbert space of

the theories we study.3 Our results agree in particular with the spectrum of ‘single trace’

chiral primaries for the (0,2) theory of the M5 brane computed in [2].

We proceed to employ the AdS/CFT correspondence to gather evidence for our con-

jecture. In particular we demonstrate that

1. In the large N limit ZN
5 and ZN

2 reduce to the partition function over supersymmetric

multi graviton configurations in AdS7 × S4 and AdS4 × S7 respectively.

2. The partition function obtained from the quantization of the full manifold of

Mikhailov’s supersymmetric giant gravitons ([4, 5] in AdS7 × S4 and AdS4 × S7

(along the lines of earlier studies [6, 7] agrees exactly with ZN
5 and ZN

2 . We also

argue that the quantization multi dual giant gravitons may be regarded as bulk ana-

logue of the quantization of the Coulomb Branch. A direct study of the quantization

of dual giant gravitons (following previous studies [8, 3]) yields additional support

for our formula for ZN
5 and ZN

2 .

The rest of this note is organized as follows. In section 2 we briefly review the su-

persymmetry algebra of the M5 and M2 brane world volume theories. We give a precise

characterization of the supersymmetric states and the partition functions Z5 and ZN
2 that

we study in this note. We also compute the partition function over supersymmetric multi

gravitons in AdS7 ×S4 and AdS4 ×S7. In section 3 we compute the partition function ZN
5

and ZN
2 by quantizing the relevant Coulomb branches. We argue that our procedure for

obtaining ZN
5 and ZN

2 has a close bulk analogue in the quantization of N non interacting

dual giant gravitons along the lines of [8, 3]. In section 4 we compute the partition function

over appropriately supersymmetric giant gravitons in AdS7 ×S4 and AdS4 ×S7, using the

methods of [6, 7]. Though this procedure is atleast superficially quite different from our

quantization of the Coulomb branch of section 3, it gives exactly the same result. In section

5 we end with a brief discussion.

1They map to time dependent solutions of the relevant theories on Sd−1 × R.
2See [2] and [3] for related earlier work.
3Equivalently, we conjecture that the Coulomb Branch exhausts the set of appropriately supersymmetric

‘classical’ configurations in the full non abelian theory. In section 3 we demonstrate that the analogeous

result is true for the low energy theory of D3-branes in IIB theory, i.e. N = 4 Yang Mills theory.
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2. Supersymmetric states and the supergravity partition function

In this section we group theoretically characterize the supersymmetric states of interest

to us in this note.4 We also use the AdS/CFT correspondence to compute the partition

function over these states in the large N limit.

2.1 M5 branes

The bosonic part of the supersymmetry algebra of the (0, 2) theory on the world volume

of the M5 brane is SO(6, 2) × SO(5). Supersymmetry generators (Qs) are simultaneously

spinors of SO(5) and chiral spinors of SO(6) ∈ SO(6, 2). The Hermitian conjugates of these

operators (Ss) are also SO(5) spinors and antichiral SO(6) spinors. Consider the set of

four Qs with given a given set of SO(5) charges. For concretenes we choose these SO(5)

charges to be H1 = H2 = 1
2 where H1 and H2 are Cartan generators of SO(5) that generate

rotations in orthogonal planes in an embedding R5 and arbitrary SO(6) charges. These

four supersymmetries, together with their Hermitian conjugates, generate the compact

superalgebra SU(4/1).

We are interested in the SU(4/1) invariant states in the (0, 2) theory of N coincident

M5-branes. There exists an equivalent characterization of these states; they are SO(6)

singlets that simultaneously obey the BPS bound

E = 2H1 + 2H2. (2.1)

In this note we will propose a formula for

ZN
5 = Tr e−µ1H1−µ2H2 (2.2)

where the trace is taken over all SU(4/1) invariant states in the theory of N coincident M5

branes.

Let us immediately compute this partition function in the limit of infinite N . Recall

that the Maldacena dual of the (0, 2) theory is M theory on AdS7 × S4. In the infinite

N limit all finite energy states are non interacting multi supergravitons. The spectrum of

gravitons in AdS7×S4 was worked out and arranged into multiplets of the superconformal

group in [10] and references therein (see also [11, 12]). All gravitons appear in short

representations of the superconformal algebra. The primaries of these representations

are SU(4) singlets, tranform in the nth symmetric traceless representation of SO(5), and

have energy equal to 2n. It turns out that the only SU(4/1) invariant states in these

representatations are those primary states with charges that obey the equation H1+H2 = n.

There exists one such state for every partitioning of n into a sum of two non negative

integers. Summing over all primaries (and hence over all n) we conclude that the set

of supergravitons of interest to us are labeled by two non negative integers (n1, n2) that

cannot simultaneously be zero; the corresponding states have charges (H1,H2) = (n1, n2).

The large N fixed chemical potential limit of the SU(4/1) invariant subsector of the (0, 2)

4See for instance [9] for information about these superalgebras and their unitary representations.
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theory is simply the Fock space over these supersymmetric graviton states. The partition

function over this Fock space is given by

Z∞
5 = TrH∞ e−µ1H1−µ2H2 =

∞∏

n1,n2=0

1

1 − e−n1µ1−n2µ2
(2.3)

where the case n1 = n2 = 0 is excluded from the product.

2.2 M2 Branes

The bosonic part of the supersymmetry algebra of the world volume of the M2 brane is

SO(3, 2) × SO(8). Supersymmetry generators (Qs) and their complex conjugates Ss are

both simultaneously spinors of SO(3) ∈ SO(3, 2) and chiral spinors of SO(8). Consider the

set of 2 Qs with arbitrary SO(3) charges and a given set of SO(8) charges. For concreteness

we choose these to be H1 = H2 = H3 = H4 = 1
2 where Hi, i = 1 . . . 4 are Cartan

generators of SO(8) that generate rotations in mutually orthogonal planes in R8. These

two supersymmetries, together with their Hermitian conjugates, generate the compact

superalgebra SU(2/1). SU(2/1) invariant states admit an alternate characterization; they

are SO(3) singlets that simultaneously obey the BPS bound

E =
1

2
(H1 + H2 + H3 + H4) . (2.4)

In this note we propose a formula for

ZN
2 = Tr e−

P4
i=1 µiHi (2.5)

over all such states.

The Maldacena dual of the M2-brane theory is M theory on AdS4 × S7. The spec-

trum of gravitons on AdS4 × S7 was worked out in [13]. This spectrum was arranged in

representations of the superconformal algebra in [14] (see also [11, 12]). All gravitons lie

in supershort representations of the superconformal algebra. The primaries of these repre-

sentations are SO(3) scalars, transform in traceless symmetric tensors (of arbitrary rank n

) of SO(8) and have energy given by n
2 . It turns out that the only SU(2/1) invariant states

in these multiplets are those primary states whose charges obey
∑4

i=1 Hi = n. Suming

over all primaries (and so all n) we conclude that the set of SU(2/1) invariant gravitons

on this space is labeled by four non negative integers that cannot all be zero. In terms of

these integers (H1,H2,H3,H4) = (n1, n2, n3, n4) where ni (i = 1 . . . 4). It follows that the

partition function over multi super gravitons is given by

Z∞
2 = TrH∞ e−µ1H1−µ2H2−µ3H3−µ4H4 =

∞∏

n1,n2,n3,n4=0

1

1 − e−n1µ1−n2µ2−n3µ3−n4µ4
(2.6)

where the term with all ni zero is excluded from the product.
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3. Quantization of the Coulomb branch

In this section we determine the partition function ZN
5 and ZN

2 by radially quantizing

Coulomb branch configurations of the world volume theories of M5 and M2 branes. We

begin this section with a brief discussion of the radial quantization of conformally coupled

scalar field theories in arbitrary dimension.

3.1 Radial quantization of a free scalar fields in aribtrary dimension

Consider a free, complex, conformally coupled d dimensional scalar field on a unit Sd−1

S =

∫
dtdd−1x

(
∂φS .∂φ∗

S − d − 2

2
φSφ∗

S

)
. (3.1)

where φ∗
S is the complex conjugate of φS . Analytically continuing to Euclidean time and

conformally mapping to the Rd we find the Euclidean action

S =

∫
∂φ̄.∂φ (3.2)

where

φ(x) =
φS(x)

|x| d−2
2

, φ̄(xµ) =
φ∗

S(xµ

x2 )

|x| d−2
2

. (3.3)

Notice that

φ̄(x) = |x|−(d−2)φ∗(xµ/|x|2); (3.4)

in particular φ̄ is not simply the complex conjugate of φ. It is possible to check that the

equations of motion

∂2φ = ∂2φ̄ = 0. (3.5)

and (3.4) are mutually consistent.5

Regular solutions of (3.1) map to field configurations φ and φ̄ whose singularities are

localized at x = 0 and x = ∞.6 The general solution of (3.5) and (3.4) is given by

φ =
∑

c∗µ1...µm
xµ1 . . . xµm + yd−2

∑
dν1...νnyν1 . . . yνn

φ =
∑

d∗ν1...νm
xν1 . . . xνn + yd−2

∑
cµ1...µmyµ1 . . . yµn

where yµ =
xµ

x2
(3.6)

and cµ1...µm and dµ1...µm are arbitrary complex traceless symmetric tensors.

It follows from (3.4) (and we note for future reference) that

∂µφ̄ =

(
1

xd−2

)[
− (d − 2)

xµ

x2
φ∗ − 2

xµxα∂αφ∗

x4
+

∂µφ∗

x2

]

x.∂φ̄ = −
(

1

xd−2

)[
(d − 2)φ∗ +

x.∂φ∗

x2

]

∂φ.∂φ̄ =

(
1

xd−2

)[
− (d − 2)

x.∂φφ∗

x2
− 2

(x.∂φ)(x.∂φ∗)
x4

+
∂φ.∂φ∗

x2

]
. (3.7)

5This follows from the observation that ∂2
x(yd−2χ) = yd+2∂2

yχ where ∂2
x and ∂2

y are the Laplacian with

respect to the x and yµ = xµ/|x|2 respectively.
6The coefficients of solutions regular at zero turn into creation operators , while the coefficients of

solutions regular at infinity turn into destruction operators upon quantization.
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The symplectic form from (3.1)

ω =

∫

S(d−1)

[
dφ̇S ∧ dφ∗

S + dφ̇∗
S ∧ dφs

]
(3.8)

translates into

−iω =

∫

Sd−1

d
[
(x.∂)

(
x

(d−2)
2 φ(xµ)

)]
∧ d

[
x

d−2
2 φ∗(

xµ

x2
)

]

+d

[
(x.∂)

(
x

−(d−2)
2 φ∗(

xµ

x2
)

)]
∧ d

[
x

(d−2)
2 φ(xµ)

]
. (3.9)

The generator of time translations in (3.1) maps to the generator of scale transforma-

tions in (3.2). The corresponding conserved current is given by

Dµ = xµ

(
∂φ̄.∂φ

)
− (d − 2)

2
[∂µφφ̄ + ∂µφ̄φ] − ∂µφ(x.∂φ̄) − ∂µφ(x.∂φ̄), (3.10)

and its conserved charge E (the energy) is given by

E =

∫
|x|(d−2)x.DdΩ(d−1)

=

∫
∂φ.∂φ̄ − 2(x.∂φ)(x.∂φ̄) − d − 2

2
[x.∂φφ̄ + x.∂φ̄φ]

=

∫
∂φ.∂φ∗ +

(
d − 2

2

)
[(x.∂φ)φ∗ + (x.∂φ∗)φ] +

(d − 2)2

2
φφ∗ (3.11)

where the integrals in the last two lines are evaluated on the unit Sd−1 |x| = 1.

The action (3.2) is invariant under a U(1) scaling of the field φ. The corresponding

Noether current, Hµ is given by

Hµ = φ̄∂µφ − φ∂µφ̄. (3.12)

The associated conserved charge H is given by

H =

∫
dΩ(d−1)x

(d−2)x.H

=

∫
φ∗x.∂φ + φx.∂φ∗ + (d − 2)φφ∗ (3.13)

where the integral in the last line is evaluated on the on the unit sphere |x| = 1.

Note that

E − (d − 2)

2
H =

∫
∂φ.∂φ∗

E +
d − 2

2
H =

∫
∂φ.∂φ∗ + (d − 2)[(x.∂φ)φ∗ + (x.∂φ∗)φ] + (d − 2)2φφ∗

=

∫
∂φ̄.∂φ̄∗ (3.14)

– 6 –
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It follows that (E ± (d−2)
2 H) is zero if and only if respectively φ or φ̄ are constant.

Further

E =
1

2

∫ (
∂φ.∂φ∗ + ∂φ̄.∂φ̄∗) . (3.15)

Consequently, in order for a configuration to have zero energy, φ and φ̄ must each be

constant. However it follows from (3.4) that φ and φ̄ can both be constant only if they are

both zero; thus φ = φ̄ = 0 is the only zero energy configuration.

Using (3.8), (3.10) and (3.12) it is a simple matter to quantize the general solution (3.6)

to obtain the spectrum of energies and charges. We illustrate this on a subclass of solutions.

Let z represent any complex direction in Rd and consider the subclass of solutions

φ =
∑

n

c∗n√
Kn

zn. (3.16)

where the constant Kn is chosen (for convenience) to be

Kn = 4πnΩd−3

∫ 1

0
r2n−1(1 − r2)

d−4
2 dr

= 2π(d − 2 + 2n)Ωd−3

∫ 1

0
r2n+1(1 − r2)

d−4
2 dr. (3.17)

We find

H =
∑

n

|cn|2

E − d − 2

2
H =

∑

n

n|cn|2

ω = i
∑

n

dc∗n ∧ dcn (3.18)

The quantization of (3.18) turns c∗n and cn respectively into creation and annihilation

operators of unit charge and energy n + d−2
2 respectively.

The quantization of the general solution (3.6) proceeds along similar lines. cµ1...µn

and c∗µ1...µn
turn into operators that are proportional to unit normalized creation and

annihilation operators of energy n+ d−2
2 and unit U(1) charge under quantization. Similarly

dµ1...µm and d∗µ1...µm
become creation and annihilation operators of energy m + d−2

2 and

negative unit U(1) charge respectively.

Real scalar fields obey the constraint

ψ = ψ̄. (3.19)

The quantization of these theories proceeds along similar lines. The equation (3.15) also

applies to real scalar fields with an extra factor of 1
2 on the r.h.s. in standard real normal-

ization (note also that the two terms on the r.h.s. of this equation are equal in this special

case). As it is impossible for a nonzero constant value of ψ to obey (3.19) (see (3.4)) it

follows that ψ = 0 is the only field configuration with vanishing energy.

– 7 –
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3.2 Quantization of the BPS sector of the U(1) theory

A single M2 brane has four free complex scalar fields, φi (i = 1 . . . 4) on its world volume.

The field φi has charge δj
i under the Cartan U(1) rotations Hj of section 2. The BPS

combinaton (3.14) evaluates to

E − 1

2

4∑

i=1

Hi =
4∑

i=1

∫
∂φi.∂φ∗

i (3.20)

It follows that the constant field configurations φi(x) = φi√
2π

are the only classical BPS

configurations; the corresponding symplectic form, energy and charge formulae are

ω = i

4∑

i=1

dφi ∧ dφ∗
i

E =
1

2

4∑

i=1

φiφ
∗
i

Hi = φiφ
∗
i . (3.21)

The quantization of (3.21) yields the Hilbert space of a four dimensional harmonic oscillator;

charge operator Hi turns into the number operator of the ith oscillator on this space.

A single M5 brane has two complex free scalar fields, φi (i = 1 . . . 2) and one real scalar

field ψ on its world volume. The complex fields φi have charges δj
i under the charge Hj; ψ

is uncharged. We have

E − 1

2

2∑

i=1

Hi =
1

2
∂ψ.∂ψ∗ +

2∑

i=1

∫
∂φi.∂φ∗

i . (3.22)

The set of classically BPS configurations is given by constant φi(x) = φi√
(2π)3

and

ψ = 0 (recall that it is impossible for a nonzero constant ψ to obey (3.19)). On this class

of solutions

ω = i

2∑

i=1

dφi ∧ dφi∗

E = 2

2∑

i=1

φiφi∗

Hi = φiφ
∗
i (3.23)

The quantization of (3.23) yields the Hilbert space of a two dimensional harmonic oscillator;

the charge operator Hi is the number operator of the ith oscillator on this space.

In summary, the symplectic manifold of classically SU(4/1) and SU(2/1) invariant

configurations on the theory of a single M5 or M2 brane is C2 and C4 respectively. The

quantization of these manifolds yields the the Hilbert space of two and four dimensional

harmonic oscillators, respectively.

– 8 –
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3.3 Quantization of the Coulomb branch

As we have remarked in the introduction, the world volume theory of N M5 or M2 branes

possesses Coulomb branches. Away from their singularities, these Coulomb branches are

metrically flat; the spaces in question are (R8)N/SN and (R5)N/SN respectively. Using

the results of the previous section, it follows that classically SU(4/1) or SU(2/1) invariant

Coulomb branch solutions constitute the symplectic manifolds (C4)N/SN and (C2)N/SN

respectively. The quantization of these manifolds yields fock space of N identical, non

interacting bosons in a 4 or 2 dimensional harmonic oscillator potential. The partition

function for this system follows immediately from the usual formulas of Bose Statistics;

∞∑

m=1

pNZN
5 =

∞∏

n1,n2=0

1

1 − pe−n1µ1−n2µ2
(3.24)

and
∞∑

m=1

pNZN
5 =

∞∏

n1,n2,n3,n4=0

1

1 − pe−n1µ1−n2µ2−n3µ3−n4µ4
(3.25)

3.4 Absence of additional supersymmetric configurations in N = 4 Yang Mills

As we have explained in the previous subsection, the world volume theory of M5 and M2

branes has a class of, respectively, SU(4/1) and SU(2/1) invariant configurations on their

Coulomb branch. We conjecture that these configurations are exhaustive; that the full non

ablelian world volume theories have possess no further SU(4/1) or SU(2/1) invariant con-

figurations, so that (3.25) and (3.24) represent the exact partition functions over SU(4/1)

and SU(2/1) invariant states in these theories.

Our poor understanding of the structure of the non abelian theory on M2 and M5

branes makes it difficult to directly verify this conjecture. In this sub section we will,

however, demonstrate that the analogous claim is indeed true of much better understood

world volume theory of N D3 branes - U(N) N = 4 Yang Mills theory.

The 1/8th BPS sector of N = 4 Yang Mills theory has recently been studied in some

detail in [15, 7, 8]; we will not pause here to characterize this subsector group theoretically,

but instead refer to reader to [15] for such details. This worldvolume theory possesses 3

complex adjoint valued scalar fields φi = ψ2i−1 + iψi (where ψi, i = 1 . . . 6 are Hermitian

N × N matrix valued scalar fields). The restriction of this sector to states (or operators)

made entirely out of scalars7 analogous, in many ways, to the supersymmetric states we

have been studying on M5 and M2 brane world volumes; this subclass of 1/8th states consist

of Lorentz scalars that obey the BPS bound E = 4−2
2 (H1 + H2 + H3) = H1 + H2 + H3

where Hi refer to the three Cartan generators of the SO(6) R symmetry of this theory. The

7It should be possible to construct the full 1
8

th
BPS cohomology of Yang Mills theory (studied in [15])

from the radial quantization of supersymmetric fermionic field configurations, together with the scalars

studied in this paper. We expect the relevant fermionic configurations to be constant diagonal gaugino

fields. As these configurations have no analogues in the theory of M5 and M2 branes, we do not perform a

detailed study of these configurations in this paper.
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Euclidean Lagrangian of this theory - restricted to configurations over which only scalar

fields are nonzero - is given by

1

g2
YM

∫
Tr




∑

i

∂φi∂φ̄i +
1

2

∑

i6=j

[ψi, ψj ][ψj , ψi]


 (3.26)

(recall ψi are the real components of the complex scalars φi). Performing the radial quan-

tization of this Lagrangian, imitating the work out of subsection 3.1, we find

E −
3∑

i=1

Hi =
1

g2
YM

Tr

∫ 


3∑

i=1

∂φi.∂φ†
i +

6∑

m,n=1

[ψm, ψn][ψn, ψm]


 . (3.27)

It follows from (3.27) that the set of scalar BPS configurations of this theory consist of

constant diagonal matrices φi, further gauge invariance requires us to identify matrices

with permuted eigenvalues8 (see [17] for closely related remarks). This set of matrices

parameterizes the Coulomb branch studied above. We conclude that the set of 1/8 BPS

configurations in N = 4 Yang Mills lies entirely within the Coulomb branch;9 in other

words the diagonal supersymmetric configurations that generalize those of [16] constitutes

the full set of scalar 1/8th BPS configurations of Yang Mills theory.

3.5 Dual giants: bulk duals of the Coulomb branch

The bulk AdS dual of an M5 or M2 brane on its Coulomb Branch is an M5 or M2 brane

that is puffed out in AdS7 or AdS4 in an SO(6) or SO(3) invariant manner. The SO(6)

or SO(3) invariant configurations in AdS7 or AdS4 are a one parameter set of 5 and 2

dimensional spheres that foliate spatial sections of AdS.10 Branes wrapping such spheres,

and otherwise moving on S4 or S7 in a supersymmetric fashion, have been identified [16, 18]

and studied in detail; they are called dual giant gravitons. In this subsection we review the

construction of these configurations [18, 16] and their quantization (partially performed

in [3]; see also [19, 20, 8] for related work). We find that the result of the quantization

of a single supersymmetric dual giant graviton is identical to the quantization of a single

brane on the Coulomb Branch discussed in the previous section. Our discussion of the

quantization of dual giant gravitons overlaps with the in the case of the M2 brane..

8Mapping to S3 we recover a slight generalization of the diagonal solutions considered in [16].
9The quantization of these configurations may be carried out; the relevant formulae are

ω = i
3

X

i=1

Tr dφi ∧ dφ†
i

E =
3

X

i=1

Tr φiφ
†
i

Hi = Tr φiφ
†
i (3.28)

10Exceptional orbits consist of points (fixed points under the rotational action). These orbits may be

regarded as the zero radius limit of our spheres, and are automatically taken into account below.
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Let us first describe dual giant gravitons in AdSm+2 × Sn+2 [18, 16]. Although back-

grounds of this form are known to appear in string theory only for specific values of m and

n, in this section and the next we will leave m and n arbitrary. The formulae we present

below apply to M5, M2, and D3 brane dual giant gravitons upon setting (m,n) to (5, 2),

(2, 5) and (3, 3) respectively.

Let the metric on AdSm+2 × Sn+2 be given by

ds̃2 = R2
1

(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

m

)
+ R2

2dΩ2
n+2 (3.29)

where Ωk is the metric on the unit k sphere. Below we will find it convenient to work with

the scaled metric

ds2 =
ds̃2

R2
1

= Gµνdxµdxν . (3.30)

R = R2
R1

is the radius of the sphere in the new rescaled metrics (3.30); in the solutions that

appear in string theory R = 2
m−1 = 2

d−2 where d is the spacetime dimension of the dual

world volume theory. In particular R = 1
2 in d = 6 and R = 2 in d = 3. The space (3.29)

has a nonzero n+1 form gauge potential An+1 turned on such that the corresponding field

strenth preserves the symmetry of Sn+2 and
∫
Sn+2 dAn+1 = 2πN . We denote the m + 1

form dual to An+1 by Am+1.

The action for an m brane propagating in this background is given by

S = −N
m−1

2 2
m−3

2

Ωm

∫ √−g +

∫
Am+1. (3.31)

For furture use we note that the action for an n brane propagating in the same background

is given by

S = − N

Rn+1Ωn

∫ √−g +

∫
An+1. (3.32)

gαβ is the pullback of the metric Gµν (see (3.30)) on the world volume of the brane in

question.

As we have explained above, in this subsection we are interested in an m-brane that

completely wraps the m dimensional sphere in AdSm+2 and so is effectively a particle in

the remaining n + 4 spacetime dimensions. The degrees of freedom of this particle are the

n + 2 position coordinates in Sn+2 and its location in the radial ρ direction in AdSm+2.

We will find it convenient to make a particular choice of coordinates on Sn+2. Regard-

ing Sn+2 as the unit sphere in Rn+3 we set

x1 + ix2 = r1e
iθ1 , . . . , xn+2 + ixn+3 = rn+3

2
e
iθ n+3

2 (3.33)

when n is odd and

x1 + ix2 = r1e
iθ1 , . . . xn+1 + ixn+2 = rn+2

2
e
iθ n+2

2 , xn+3 = h (3.34)
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when n is even. The metric on Sn+2 is

dΩ2
n+2 = dh2 +

k∑

i=1

dri
2 +


d

√√√√1 − h2 −
k∑

i=1

r2
i




2

+

(
1 −

k∑

i=1

ri
2 − h2

)
dθk+1

2 +

k∑

i=1

ri
2dθi

2 (3.35)

where k = n+1
2 when n is odd (in which case we simply set h to zero in (3.35)) and k = n

2

when n is even.

The action for the dual giant graviton is given by

S = 2
m−3

2 N
m−1

2

∫
dτ L (3.36)

where

L = +ṫ sinhm+1 ρ − sinhm ρ

√

ṫ2 cosh2 ρ − ρ̇2 − R2

(
dΩn+2

dτ

)2

(3.37)

where (dΩn+2

dτ
)2 is the sigma model kinetic term on a unit Sn+2 and, once again, h is simply

set to zero when n is odd.

In order to proceed we choose τ = t. As the variables θi do not appear in the lagrangian,

θ̇i are constants on all solutions to the equations of motion. Let us study the ansatz h, ri,

θ̇i and ρ = all constant. This ansatz yields solutions when h = 0 (forced by the h equation

of motion), θ̇i are all equal (forced by the ri equation of motion) and θ̇i = 1
R

(forced by the

ρ equation of motion). Note that ri, ρ and the intial values of θi are unconstrained, and

parameterize distinct solutions. On solutions Hi is the momentum conjugate to θi while

the energy is the negative of the momentum conjugate to t; we find

k+1∑

i=1

Hi = R(sinhm−1 ρ)

k+1∑

i=1

ri
2 = R sinhm−1 ρ

E = sinhm−1 ρ =
1

R

k+1∑

i=1

Hi. (3.38)

As a consequence of the last equation in (3.38) the solutions described in the previous

paragraph are all ‘supersymmetric’.

Notice that h (which exist only for even n) is always zero on solutions to the equations

of motion. This is a dual expression of fact that the real field ψ of section 3.2 is zero on

‘supersymmetric’ Coulomb branch configurations.

On these solutions the momentum corresponding to ρ ,ri and h all vanish. The mo-

mentum conjugate to θi is given by

Pθi
= (sinhm−1 ρ)R2ri

2θ̇i = Rri
2 sinhm−1 ρ. (3.39)

It follows that

ω =
∑

i

dPθi
∧ dθi =

k+1∑

i=1

2RidRi ∧ dθi = i
k+1∑

i=1

dφi ∧ dφ∗
i (3.40)
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where

Ri =
√

R(sinh
m−1

2 ρ)ri (3.41)

and

φi = Rie
−θi . (3.42)

The expressions for charges are11

E =
d − 2

2

∑

i

|φi|2

Hi = |φi|2. (3.43)

Notice that (3.40) and (3.43) are identical to (3.23). It follows that the quantization of a

single dual giant graviton is identical to the quatization of a single brane on the Coulomb

branch.12 The interesting translation formulas (3.41) and (3.42) provide a dictionary to

convert between spacetime coordinates and Yang Mills field expectation values.

4. Supersymmemtric states from giant gravitons

In the previous section we have determined the partition function over supersymmetric

states on the M5 brane or M2-brane world volume by quantizing supersymmetric Coulomb

branch configurations. In this section we will demonstrate that there exists a bulk quanti-

zation - superficially unrelated to the quantization of the Coulomb branch - that permits

relatively simple finite N computation the spectrum of supersymmetric states in the world

volume theories of M5 and M2 branes. The procedure we refer to is the quantization of

giant gravitons.

Over 5 years ago Mikhailov constructed all SU(4/1) invariant giant graviton configu-

rations in AdS7 ×S4 and AdS4 × S7. Mikhailov’s giant gravitons all sit at the point ρ = 0

in AdS7 or AdS4 (i.e. at the fixed point of the SO(6) or SO(3) killing symmetry in this

space). The shape of these probes with the S4 or S7 is described by an indirect construc-

tion. Let us first consider the case of S4. Let S4 be embedded as the unit sphere in R5.

The rotations H1 and H2 are represented by killing vector fields corresponding to rotations

in orthogonal two planes in R5. A rotation by angle π
2 simultaneously in each of the H1 and

H2 directions yields a complex structure in C2 ∈ R5. Let z1 and z2 be complex coordinates

in this C2. Mikhailov has demonstrated that M2-branes that wrap the intersection of the

‘holomorphic’ surface F (e−itz1, e
−itz2) = 0 with the unit 5 sphere are all SU(4/1) invari-

ant. Similarly, supersymmetric giant gravitons in AdS4 ×S7 are M5 branes that sit at the

centre of AdS4. Let S7 be regarded as the unit sphere in R8. Hi (i = 1 . . . 4) are rotations

in mutually orthogonal planes in R8. A simultaneous rotation by π
2 in each of these direc-

tions is a complex structure on this space. Mikhailov has demonstrated that M2-branes

that wrap the intersection of the ‘holomorphic’ surface F (e−itz1, e
−itz2, e

−itz3, e
−itz4) = 0

with the unit 5 sphere are all SU(4/1) invariant.

11Similar results are reported in [3].
12See [8] for arguments that suggest this identity should persist for collections of multi giant gravitons.
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We now turn to the quantization of giant gravitons. Following [7] we first regulate the

space of holomorphic functions on C2 or C4. Let P 2
d or P 4

d refer to the set of holomorphic

polynomials in C2 or C4 whose degree less than or equal to d. Pd is a linear vector space

of dimensionality nd =
(
d+2
2

)
or

(
d+4
4

)
. In this section we demonstrate that as a symplectic

manifold, P 2
1 and P 4

1 are respectively the spaces CP 2 or CP 4 with symplectic form (derived

by restricting the dynamical symplectic form from the Born Infeld and Wess Zumino action

to our subspace of solutions) NωFS where ωFS is the Fubini Study form on CP 2 or CP 4.

It follows from this result, together with the formal arguments of sections 2-4 in [7], (all of

which apply to the context of this note) that Pd is the symplectic manifold CPnd−1 with

a current (distributional) symplectic form in the cohomology class of NωFS (see [7]). In

particular the partition function over the Hilbert space obtained from the quantization of

this symplectic manifold is (see section 4 of [7]) the power of pN in

n1+n2≤d∏

n1,n2=0

1

1 − pe−n1µ1−n2µ2
(4.1)

where

ZN
5 = Tr e−µ1H1−µ2H2 (4.2)

for the case of the M5 brane, and in

n1+n2+n3+n4≤d∏

n1,n2,n3,n4=0

1

1 − pe−n1µ1−n2µ2−n3µ3−n4µ4
(4.3)

where

ZN
2 = Tr e−µ1H1−µ2H2−µ3H3−µ4H4 . (4.4)

for the case of the M2 brane. (4.1) and (3.25) are the partition functions obtained from

the quantization of regulated classes of Mikhailov’s solutions. In order to remove the

regulator we simply take the limit d → ∞; under this limit (4.1) and (4.3) reduce to our

proposals (3.24) and (3.25) for the partition functions over appropriate states in the M5

and M2 brane theories respectively.

In the rest of this section we will construct the manifold P 2
1 and P 4

1 of ‘linear’ Mikhailov

solutions.

4.1 Quantization of linear polynomials

In this section we construct and quantize the intersections of

k+1∑

i=1

e−i t
R ci

yi

R
− 1 = 0 (4.5)

in Ck (here yis are the coordinates on Ck) with

(a) with the sphere of radius R in Ck+1 and

(b) with the sphere of radius R in R2k+3.
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We follow the procedure of [7]; see also [19, 20] for related work.

We will quantize our manifold of solutions with respect to the canonical symplectic

form obtained from the action (3.32) (recall that (3.32) describes the motions of probe M5

branes in AdS4×S7, probe M2 branes in AdS7×S4 and probe D3 branes in AdS5 ×S5 for

appropriate values of the parameters m and n defined before (3.32); the sphere referred to

above may be identified with the sphere in (3.30)).

The action (3.32) may be written out in more detail as

S =
N

Rn+1Ωn

∫ √−g dnσ dt +

∫

Sn+2

dnσAµ0µ1···µn
˙xµ0

∂xµ1

∂σ1
· · · ∂xµn

∂σn

(4.6)

Here xµs are coordinates on Sn+2 and σs are coordinates on the world volume of the brane

Σn. gij is the induced metric on Σn. A is the (n + 1) form such that dA = F = 2πN
Rn+2Ωn+2

ǫ

where ǫ is the volume form on the Sn+2. We will find it convenient to work with the

rescaled complex variables zi = yi

R
. By a U(k + 1) rotation any linear polynomial of the

form (4.5) can be expressed as

c0e
−i t

R zk+1 − 1 = 0 (4.7)

where |c0|2 =
∑

i |ci|2. The intersection of (4.7) with an Sn+2 of radius R, centered about

the origin, is an Sn of radius R
√

1 − 1
|c0|2 . It is not difficult to check that (4.7) satisfies

the equations of motion that follow from (4.6). Further, the energy (momentum conjugate

to −t) and the angular momenta on this solution are (see appendix A)

E =
N

R

(
1 − 1

|c0|2
)n−1

2

Pθ = N

(
1 − 1

|c0|2
)n−1

2

E =
1

R
Pθ (4.8)

Let us now return to the general linear solution (the solution parameterized by arbi-

trary complex coeficeints ci). The symplectic form is a closed two-form on the parameter

space formed by the coefficients (ci) of the solution and the symplectic form must respect

the U(k + 1) invariance of the action. These conditions constrain the symplectic form to

be of the form

ω = f(|c|2)
(

dc̄i ∧ dci

2i

)
+ f ′(|c|2) c̄icj

(
dc̄j ∧ dci

2i

)
(4.9)

This function f can be expressed as a sum of two terms one coming from the Born-Infeld

part of the action (denoted by fBI) and one coming from the Wess-Zumino term (denoted

by fWZ). Below (in most of the rest of this section) we compute fBI and fWZ following [7].
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We find

fBI(x) = −2N
1

x2

(
1 − 1

x

)n−1
2

fWZ(x) = −2N

(
1 − 1

x

)n+1
2

x
f(x) = fBI(x) + fWZ(x)

=
−2N

x

(
1 − 1

x

)n−1
2

(4.10)

Now since |c|2f(|c|2) monotonically increases from 0 to 2N as |c|2 varies from 1 to ∞,

it is possible to make a (non holomorphic) change of variables to convert the symplectic

form ω into to N times the standard Fubini Study form ωFS. Explicitly

ω = −2N

[
1

1 + |w|2

(
dw̄i ∧ dwi

2i

)
− 1

(1 + |w|2)2 w̄iwj

(
dw̄j ∧ dwi

2i

)]
. (4.11)

where

wi = ci

√
f̃(|c|2)

1 − |c|2f̃(|c|2)
(4.12)

and f̃(x) = f(x)/2N .

Note that the ‘hole’ |c| < 1 has been contracted away to a point in the ‘good’ w

variables (see [7] for a detailed discussion of the same phenomenon in a different context).

The quantization of our space is now standard in w variables. The Hilbert space is given

by the holomorphic polynomials of (k + 2) variables (wi and 1) with k charge operators

Li = wi∂wi
. This is identical to the Hilbert space of N identical non-interacting bosons

whose single particle Hilbert space consists of (k+1) states with the ith state having charge

one under Li and charge zero under all others and the (k + 2)th state having all charges

zero.

In the rest of this section we present the computations that lead to (4.10).

4.2 Calculation of ωBI

It is convenient to calculate ωBI in the rotated coordinate system where linear polynomial

takes the form of (4.7). As coordinates on the (unit Sn+2 = Ωn+2) we will choose

zk+1 = Z = ρeiθ (4.13)

together with [Z1, Z2, . . . , Zk, (H)] where

[z1, z2, . . . , zk, (h)]√
1 − ρ2

≡ [Z1, Z2, . . . , Zk, (H)]. (4.14)

Note that H2 +
∑k

i=1 |Zi|2 = 1. Of course the coordinate H simply does not exist - and so

may be set to zero in all equations - when n is odd.
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Since ωBI is an exact form it can be expressed as dΘbI where ΘBI is an one-form given

by

ΘBI =

∫
dnσ(PZδZ + PZ̄δZ̄) (4.15)

where Z = zk, PZ is the momentum corresponding to the coordinate Z evaluated at the

solution given by (4.7), δZ and δZ̄ is the fluctuation of Z and Z̄ (to the leading order)

as the coefficients of the linear polynimial are varied infinitesimally, and we have used the

fact that PZi
= PZ̄i

= PH = 0 on the solution (4.7).

PZ and PZ̄ can be computed from the BI part of the lagrangian which is given by

LBI = − N

Ωn

√
gΩn

(1 − ZZ̄)
n
2

R

√√√√
1 − R2

Z̄2Ż2 + Z2 ˙̄Z
2
+ 2(2 − ZZ̄)Ż ˙̄Z

4(1 − ZZ̄)
(4.16)

((4.16) may also be rewritten in terms of ρ and θ; see appendix A)

Therefore

PZ =
∂LBI

∂Ż
= (i)

N

Ωn

√
gΩn(1 − ZZ̄)

n−3
2

(
Z

Z̄2

4
− Z̄

(
2 − ZZ̄

4

))
(4.17)

where we have used Ż = iZ
R

on (4.7). PZ̄ is simply the complex conjugate of PZ .

We will find it useful to compute ΘBI in terms of the variables ci. Consider the giant

graviton

(c0 + δc0) ei t
R zk+1 +

k∑

i=1

δaie
i t

R zi = 1. (4.18)

This configuration is a small fluctuation about (4.7); the corresponding variation in Z is

given by

δZ = −ei t
R

c2
0

δc0 −
√

1 − ZZ̄

c0
(Z1δa1 + Z2δa2 + . . . + Zkδak) ; (4.19)

δZ̄ is given by the complex conjugate expression.

Using these expressions

ΘBI = N

(
i

2

)
1

|c0|4
(

1 − 1

|c0|2
)n−1

2

(c̄oδc0 − c0δc̄0) (4.20)

(all terms proportional to δai evaluate to zero upon integrating over the sphere).

Substituting |c0|2 → c̄ici = |c|2, c̄0δc0 → c̄idci and c0δc̄0 → cidc̄i

ΘBI = N
i

2

1

|c|4
(

1 − 1

|c|2
)n−1

2 (
c̄iδci − ciδc̄i

)
(4.21)

ωBI = dΘBI = fBI(|c|2)
(

dc̄i ∧ dci

2i

)
+ f ′

BI(|c|2) c̄icj

(
dc̄j ∧ dci

2i

)
(4.22)

Where

fBI(x) = −2N
1

x2

(
1 − 1

x

)n−1
2

(4.23)
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4.3 Calculation of ωWZ

As argued in appendix C.1 of [7] ωWZ can be written as 2πN
Rn+2Ωn+2

times the volume swept

out by the two deformations of the brane surface. The volume of the giant graviton

RnΩn(1 − ZZ̄)
n
2 ; the volume swept out when the graviton is deformed is

Vdeformed = −
∫

dnσRn+2
√

gΩn (1 − ρ2)
n−1

2 ρδρ ∧ δθ (4.24)

Here ρ and θ are the radial and angular directions in unit Sn+2 that are perpendicular to

Sn. Using (4.13)

ωWZ = − 2πN

Rn+2Ωn+2
Vdeformed =

2πN

Ωn+2

∫
dnσ

√
gΩn (1 − ZZ̄)

n−1
2

(
δZ̄ ∧ δZ

2i

)
(4.25)

Using (4.19)

ωWZ = − 2πN

Ωn+2

∫
dnσ

√
gΩn (1 − ZZ̄)

n−1
2

(
δc̄0 ∧ δc0

2i|c0|4
+

(1 − ZZ̄)

|c0|2
k−1∑

i=1

(
|Zi|2

δāi ∧ δai

2i

))

(4.26)

Now
∫

dnσ
√

gΩn |Zi|2 =
2

n + 1
Ωn. (4.27)

δc̄0 ∧ δc0 → c̄icj

(
dc̄j ∧ dci

|c|2

)
(4.28)

and
k−1∑

i=1

(δāi ∧ δai) → dc̄i ∧ dci − c̄icj

(
dc̄j ∧ dci

|c|2

)

Using these equations we find

ωWZ = fWZ(|c|2)
(

dc̄i ∧ dci

2i

)
+ f ′

WZ(|c|2) c̄icj

(
dc̄j ∧ dci

2i

)
(4.29)

Where

fWZ(x) = −2πN

(
2

n + 1

)
Ωn

Ωn+2

(
1 − 1

x

)n+1
2

x
= −2N

(
1 − 1

x

)n+1
2

x
(4.30)

5. Discussion

In this note we have argued that the spectrum of 1/4th BPS states of the world volume

theory and the 1/8th BPS states of the theory on M2 branes is very similar to the 1/8th

BPS cohomology of N=4 Yang Mills theory. One point of difference is that the M5 and

M2 brane supersymmetric spectra consists entirely bosonic states, while the Yang Mills

cohomology includes fermions. The reason for this difference can be traced to the fact that
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the Euclidean rotation group, SO(d), is a reducible in d = 4 but irreducible in d = 6 and

d = 3. The BPS states studied in this note are singlets under SO(6) or SO(3) on the M5

or M2 worldvolume, and so are purely bosonic. 1/8th BPS states in Yang Mills theory are

singlets only under one of the two SU(2)s in SO(4); a condition that allows fermions to

contribute to this cohomology.

The partition functions ZN
5 and ZN

2 have interesting behavior in the large N limit

(see [15] for a longer discussion of the analogous behaviour of ZN
3 in Yang Mills theory).

For simplicity let us set µ1 = µ2 = ν in and µ1 = µ2 = µ3 = µ4 = χ (in (3.24) and (3.25))

for discussion of this paragraph. At fixed ν and χ, (3.24) and (3.25) simply reduce to the

relatively structureless formulas (2.3) and (2.6) in the large N limit. If, however, the large

N limit is taken keeping ν̃ = νN
1
2 or χ̃ = χN

1
4 , ZN

5 and ZN
2 undergo sharp Bose Einstein

type phase transitions at ν̃ and χ̃ of order unity. In the large ν̃ or χ̃ ‘Bose condensed’

phase we recover the partition functions (2.3) and (2.6). However the small ν̃ or χ̃ phase

has different thermondynamics. It would be interesting to understand the gravity dual of

this new phase (see [7] for a related discussion).

The BPS states we have investigated in this note were easily analyzed because they

controlled by the relatively tame ‘diagonal’ dynamics of the Coulomb branch. 1/16 BPS

states in these theories are almost certain to explore the non Abelian dynamics of these

theories in a detailed way. While the investigation of these states appears to be a rather

difficult problem, it holds the promise of substantial pay offs.
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A. Charges of the giant graviton

In this appendix we review the computation of the charges of the giant graviton (4.7) (see

for example [5, 19, 18, 16, 20]). Let zk+1 = ρeiθ. The metric on time × a sphere of radius

R may be written as

ds2 = −dt2 + R2

[
dρ2

1 − ρ2
+ ρ2dθ2 + (1 − ρ2)(dΩn)2

]
(A.1)

where (dΩn)2 is the metric on the unit Sn. In this appendix we study the dynamics of a

giant graviton that (at a given time) wraps the Sn but is located at some point in ρ and

θ. The action for such a giant graviton is given by

S =

∫
dtL = N

[
− (1 − ρ2)

n
2

R

√
1 − R2

(
ρ̇2

1 − ρ2
+ ρ2θ̇2

)
+ (1 − ρ2)

n+1
2 θ̇

]
(A.2)
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θ̇ is constant on all solutions to the equations of motion that follow from (A.2). ρ =

constant is a solution to the equation of motion provided

θ̇ =
1

R
(A.3)

The momentum conjugate to θ on this solution is given by

Pθ =
∂L

∂θ̇
|θ̇= 1

R
= N(1 − ρ2)

n−1
2. (A.4)

The energy of the solution is given by

E = θ̇Pθ − L =
N

R
(1 − ρ2)

n−1
2 (A.5)

Therefore for this solution obeys the ‘BPS’ relation

Energy =
1

R
(angular momentum) (A.6)

For the case of AdS7 × S4 and AdS4 × S7 the value of R is 1
2 and 2 respectively. (A.6) is

literally the BPS bound for these cases.
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